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TILING A SQUARE WITH SIMILAR RECTANGLES

C. FREILING AND D. RINNE

ABSTRACT. In 1903 M. Dehn proved that a rectangle can be tiled (or
partitioned) into finitely many squares if and only if the ratio of its base
and height is rational. In this article we show that a square can be tiled
with finitely many similar rectangles of eccentricity r if and only if r is an
algebraic number and each of its conjugate roots has positive real part.

1. Introduction
In 1900 Max Dehn [5] proved the following.

Theorem 1. (Dehn)' A regular tetrahedron cannot be cut into a finite
collection of polyhedra and then reassembled to form a cube of the same
volume.

This solved the third problem on Hilbert’s famous list presented to the
International Congress of Mathematics on August 8 of the same year. The
theorem demonstrates, for example, why the formula for the volume of
a pyramid cannot be derived without using some sort of limit process,
answering a question which goes back to Gauss (For more on the history
of this problem and an excellent exposition of its solution see [2]).

Three years later, Dehn proved the following similar result [6].

Theorem 2. (Dehn) A rectangle can be tiled using finitely many squares
if and only if the ratio of its side lengths is a rational number.

Although the statement of this theorem is what one expects, the proof is
surprisingly difficult. Dehn’s idea was to create a system of linear equations
representing each such tiling and then show that the system has a unique
solution. If the rectangle is assumed to have base 1 then the sides of all the
square tiles, and hence also the height of the rectangle, must be rational
numbers. Dehn actually proved a more general result which we will state
and prove in Section 4.
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I This theorem remains true even if we are allowed to reverse the orientation of the
pieces and even if we are allowed to first add congruent polyhedra to the tetrahedron
and cube.
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In a seemingly unrelated development, Hamel (1905 [13]) showed that
the Axiom of Choice implies the existence of a non-linear function satisfy-
ing Cauchy’s functional equation f(z+y) = f(x)+ f(y). The construction
uses what is now referred to as a Hamel basis, that is, a basis for the vector
space of real numbers over the field of rationals. Since the dimension of this
space is infinite (in fact the same size as the continuum) the existence of
such a basis relies on some form of the Axiom of Choice. Once such a basis
is assumed, the construction of a Hamel function is easy. The function f
is not only non-linear, but can be assigned arbitrary values on a linearly
independent set as follows. Given a linearly independent set, extend it
if necessary, to a Hamel basis H. For each h € H choose f(h) arbitrar-
ily. Any real number x can be uniquely expressed as aih; + --- 4+ aphn,
where each a; is a nonzero rational number and each h; € H. Define
f(z)=a1f(h1)+---+anf(h,). The additivity of f is then easily checked.

Dehn’s original proofs of Theorems 1 and 2 are complicated and im-
provements have been made over the years. In 1940, Brooks, Smith, Stone,
and Tutte [4] gave a creative new way to conceptualize Theorem 2. They
showed how to transform a square partition of a rectangle into an electric
circuit by using Kirchoff’s Laws. Each square in the tiling is represented
by a wire with unit resistance and the current through each wire repre-
sents the side length of the square. The nodes of the circuit represent
the horizontal line segments of the tiling, and the wires connect the nodes
the same way the squares connect the horizontal line segments. Thus the
voltage drop for the entire circuit is the height of the tiled rectangle. By
using the fact that Kirchoff’s Laws are satisfied (as long as the tiles are
squares) and that these laws are sufficient to solve for the currents in each
wire (see, for example, [1]) they deduced that the currents must all be
rational multiples of the voltage drop. This translates into the sides of
the squares (and therefore also the base of the original rectangle) being
rational multiples of the height of the rectangle.

Reproving Dehn’s theorem was not their only motivation. They applied
this technique to help find a tiling of a square into 26 other squares, each of
a different size, disproving a conjecture of Lusin. Such “perfect” squarings
have also been discovered by others. See [14] for a survey.

It was not until the 1950’s that the Swiss geometer Hadwiger and his
students connected the ideas of Hamel to the solution of Hilbert’s third
problem (see [9],[10],[11]). Using a Hamel function, they created a notion
of volume. Like usual volume, this new measurement is preserved when
polyhedra are cut into other polyhedra and moved around. The proof is
then completed by showing that the new volume of the regular tetrahedron
is positive while that of the cube is zero. As Boltianskii pointed out in
[2] and [3], although the Axiom of Choice is implicitly used in such an
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argument, it can in fact be easily dispensed with.

Hamel functions were also used by Hadwiger [12] to give a transparent
proof of Theorem 2. (Also see Pokrovskii [16].) This proof is the primary
inspiration behind our main result. We therefore, as an introduction to
the techniques, provide this proof in detail in Section 3.

2. Notation and definitions

We consider rectangles oriented in the plane with sides parallel to the
coordinate axes. By a b x h rectangle we mean one with base b and height
h. The eccentricity of a b x h rectangle is max(%, %) We use Q and R
to denote the sets of rational numbers and real numbers respectively and
Q[z1,... ,z,] is the ring of polynomials in the variables z1,... ,z, with
coefficients in Q. For a matrix A, we use A’ for the transpose of A.

3. Hadwiger/Pokrovskii proof of Theorem 2

Let R be a b x h rectangle of eccentricity r. We may assume that h > b.

Ifr = % = g € Q where p and ¢ are integers then R can be easily

partitioned by pq squares, each being g X S.

Suppose then that r is irrational. Then h and b are linearly independent
over Q. Let f be a Hamel function with f(b) =1 and f(h) = —1. Define
the Hamel area of any x X y rectangle to be f(x)f(y). The Hamel area
of R is then —1 while the Hamel area of any square is nonnegative. The
proof is completed by showing that if R is partitioned into subrectangles,
the area of R is the sum of the areas of the partitioning rectangles. In
other words, this area function is additive. Let R' = Ry U Ry be rectangles
as in Fig. 1.

Ry Ry | 2

X y

Figure 1

Then the Hamel area of R’ is f(x+y)f(z) = f(x)f(z)+ f(y)f(z) which
is simply the Hamel area of R; plus the Hamel area of Rs, so we have
this additive property for Hamel area. Note that any partition of R into
rectangles has a refinement which forms a grid. (see Fig. 2)
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— refined to

Figure 2

It follows from the additive property above that the Hamel area of R
is just the sum of the Hamel areas of the partitioning rectangles (since
both are the sum of the areas of the partitioning rectangles in the refine-
ment). [

By varying the definition of Hamel area, one easily obtains generaliza-
tions which do not seem to lend themselves to the Kirchoff’s Law approach.
For example, suppose we have rectangular tiles in two colors, red and anti-
red. If a red tile overlaps an anti-red tile, the two colors “cancel” in the
overlap and become transparent. If two red tiles overlap, they form a dark
red region that could be cancelled by two anti-red tiles stacked on top of
them. Three red tiles stacked up form a dark dark red region, and so on.
Now consider our irrational rectangle sitting in a white plane. Can this
rectangle be covered with red and anti-red tiles so that it appears uniform
in color (but not white) while the complement of the rectangle appears
to remain white? The answer is no, but the Hamel area proof above fails
since, once we allow squares to be subtracted as well as added, arriving at
a negative overall Hamel area is no longer a contradiction as desired.

However, the following modification can be made (also see [15]). Let
us redefine Hamel area for an z x y rectangle to be xf(y) — yf(x). This
is a slightly stranger definition of area since changing the orientation of
a rectangle without changing size causes a sign change in its Hamel area.
Nonetheless, it is easy to see that the crucial additive property of Hamel
area is preserved. The proof of the red/anti-red problem is then finished
by noting that the Hamel area of any square is zero, while the Hamel area
of Risbf(h) —hf(b) = —b—h #0.

4. Main results

The following theorem of Dehn, given here using a Hamel basis type
proof, will be used later and relates the eccentricity of a rectangle to the
eccentricities of partitioning subrectangles. Observe that this theorem
implies one direction of Theorem 2.

Theorem 3. (Dehn) Let Ry,..., R, be a partition of the rectangle Ry,
with bases b; and heights h;, 0 <i <n. Ifr; = h;/b;, then ¢ is a rational
function of r1,...,r, with rational coefficients.
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Proof. Let P be the field of rational functions using polynomials in
Q[r1, ..., r,] and consider the reals as a vector space over P. If rg ¢ P, we
may select a basis using by and hg as the first two basis elements. Define the
Hamel area of a b x h rectangle to be I'; (b)['a(h) —I'1 (h)I'2(b) where I'y (7)
and I'y(r) are the coefficients of by and hg respectively in the basis represen-
tation of r. Then the area of Ry is I'1(bo)T'2(ho) — I'1(ho)T'2(bg) which is
1-1—-0-0 = 1 while the area of each subrectangle is I'y(b;)I'2(h;) —
Fl(hz>rg(bl) which is Fl(bz)rg(ﬂbl) — Fl(leZ)FQ(bz) = rl[l“l(bz)l“g(bz) —
I (b:)2(b;)] = 0. It is easy to see that this area has the desired additive
property, and this gives a contradiction. Thus ro € P. [

1

jus

e 2

T T+
Figure 3

A simple example shows (see Fig. 3) that rg need not be in Q[rq,...,7,].
The rectangle partitioned by subrectangles of eccentricities m and e has

27re—i—7r2

To = P
In fact, the rational function in Theorem 3 takes on a special form, as
the next lemma shows.

Lemma 4. Let Rq,..., R, be a partition of the rectangle Ry as in Theo-
rem 3. Then rg = % where P and Q are polynomials with rational

coefficients, all terms of P are of the same degree, all terms of Q are of
the same degree, and the degree of QQ is one less than the degree of P.

Proof. We know that rg is a ratio of two polynomials in Q[ry,...,r,] by
Theorem 3. Let i be any number which is transcendental over rq,...,r,.
Scaling the vertical axis by a factor of 7 gives a rectangle of eccentric-
ity nro which is partitioned by subrectangles with height-to-width ratios

P’
,(177"17 MNTn) for some
Q' (nr1,...,nTn)

P(riyern) _ Pgrasenra) oo
Q(r1,e-5Tn) Q'(mr1,-.nTn)

(1) nP(ri,...,r0)Q (nre,....mrn) = P'(nra, . ,nrn)Q(r1, .y mn)-

Now let A(ry,...,7,) be the sum of the terms of largest degree, say de-
gree k, in P(ry,...,ry,), and let B(rq,...,7r,) be the corresponding sum
for Q(ry,...,ry), say of degree [. Then the leading term of P(nry,...,nry,)
(considered as a polynomial in ) is A(ry, ..., r,)n* and the leading term of

nri,...,nry. Using Theorem 3 again, we have nrg =

polynomials P’ and Q’. Thus 7
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Q(nri,...,nry) is B(ry,...,m,)n'. This says that the leading term on the
left side of equation (1) is nP(r1,...,7,)B(r1,...,r,)n' while the leading
term on the right side is Q(ry,...,7,)A(T1,...,7,)n*. Since 7 is tran-
scendental over rq,...,r,, these terms must be equal so k = [ + 1 and

P(”‘lv"-z"’n) _ A(le-~~77'n) .
Q(ri,rn)  B(ri,yrn) as desired. O

Lemma 4 leads to the following result which rules out using a transcen-
dental eccentricity to partition a square.

Lemma 5. If a square is partitioned by rectangles of eccentricity n then
7 s algebraic.

P(n,1/n)
Q(n,1/n)

VRN .

of the form a;n* (%) = a;n*~% and each term of @ is of the form
, I—i

bin' (%) =bin

P are all of the same parity and the powers in @ are all of the opposite

parity. This says that 7*[Q(n,1/n) — P(n,1/n)] represents a nontrivial

polynomial with root n. O

where each term in P is

Proof. By the previous lemma 1 =

2=l where k = [ + 1. So, the powers of 7 in the terms of

The next two lemmas will be used in the proof of our main result.

Lemma 6. If p(z) € Q[x] is irreducible and has £r as nonzero roots, then
p 1S even.

Proof. Let E(x) and D(x) be the polynomials formed by the even and odd
power terms of p(x) respectively. Then E(—r) = E(r) and p(—r) = p(r) =
0so D(—r) =p(—r)—E(-r)=p(r)— E(r) = D(r). But D(—r) = —D(r)
since D is odd. Thus D(r) = 0 and this also gives E(r) = 0. If D is
not identically zero, then D(x) = zF(x) where F is of degree strictly
smaller than that of p. Then F(r) = 0 so F' is not relatively prime to p,
contradicting the fact that p is irreducible. Thus p = F as desired. [

Corollary 7. Let r > 0 be algebraic with minimal polynomial p(x). Then
all roots of p have positive real part or p has a root with strictly negative
real part.

Proof. If the roots of p do not all have positive real part then either p has
a root with strictly negative real part, in which case we are done, or else p
has pure imaginary roots +bi. Then by the previous lemma, p is an even
polynomial. Since p has the real root r > 0, —r < 0 is also a root and we
are done. [J

Lemma 8. If p(x) € Q[x] is irreducible then p has distinct roots.
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Proof. If r is a double root of p then it is also a root of the derivative p’
which is of smaller degree. This says that p and p’ are not relatively prime
contradicting the irreducibility of p. O

The following theorem of Wall [19] is also used in the proof of our main
theorem. See [7] and [18] for a generalization to complex coefficients.

Theorem 9. (Wall)? Let P(x) = 2™ +p,_12" 1+ -+pg and let Q(z) =
P12 L + p_32™ 3 + -+ be the alternant of P(z). All roots of P(x)
have positive real part if and only if

Q) -1
P(2) - Q) 1

CnT +

(2)

Cp—1Z +

C1T
where each c; > 0.

We are now ready for the main result.

Theorem 10.3 A square can be partitioned using rectangles of eccentric-
ity v if and only if v is algebraic and all the conjugate roots of r have
positive real part.

Proof. We first show that r algebraic and having conjugate roots with
positive real parts is sufficient to partition a square. Let P be the minimal
polynomial for r over the rationals of degree n. Using @), the alternant in
Wall’s Theorem, we have

Qlr)  _ —1

P(r) —Q(r) 1

CnpT +

Cn—1T +
1

cqr

2This theorem is usually stated using a polynomial all of whose roots have negative
real part. In that case, the numerator of the right side of equation 2 is 1 instead of —1.
Polynomials whose roots have negative real part are important in the stability theory of
systems of differential equations. The question of characterizing these polynomials was
raised by Maxwell and answered by Routh and Hurwitz (see [8],[17]) using determinants.
The continued fraction version due to Wall is more directly applicable to our tiling
problem.

3This theorem has also been proved independently by M. Laczkovich and G. Szek-
eres. Their proof will appear in Discrete Geometry, a volume dedicated to the eightieth
birthday of L. Fejes-T6th.
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where each ¢; > 0. Since P(r) = 0, we also have P(r) — Q(r) = —Q(r) so

1= #@m. This gives

It remains to show that the right side of the last equality is the ratio of
height to base of some rectangle partitioned by rectangles of eccentricity
r. This will, of course, be a square. We define rectangles C inductively
and show that the corresponding ratio of height to base is

CrT +

Cp—1T + -
1

cr

In addition, each C} can be partitioned by rectangles of eccentricity r. Let
C1 be a c;r x 1 rectangle. Then 61% is of the desired form. Observe that
the ratio of height to base for C is a rational multiple of %, so C; can be
partitioned using rectangles of eccentricity r. Suppose C}, has been defined
as a b x h rectangle with

S|
—_

cLr +

Ch—1T + —
1

cr

and that Cj, can be partitioned using eccentricity r. Define C1 as follows.
Rotate Ci 90° to an h X b rectangle and adjoin to its right vertical side a
ck+17b x b rectangle. The resulting Cj41 is then (cx17b+ h) X b and the
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ratio of height to base is

b 1 1

Ck+17”b+ h C}H_l’l“—{—% B 1
Ci41T +

cLr + -
1

cr

as desired. Since Cy41 is formed by adjoining a partitionable rectangle to
Cl, it is itself partitionable. The rectangle C), is then the desired square.

To prove necessity, suppose that r is algebraic of degree n (we know that
r cannot be transcendental by Lemma 5) but has a conjugate root with
real part less than or equal to zero. By Corollary 7 we may assume that
a conjugate root has negative real part. We will define an area function
so that rectangles of eccentricity r have area greater than or equal to zero
and construct a square whose area is less than zero. Then this square
cannot be partitioned by rectangles of eccentricity . We define our area
function via a quadratic form. Since r is algebraic Q[r] forms a field, the
rational polynomials in r of degree less than or equal to n — 1. Let H be
a Hamel basis for R as a vector space over Q[r]. We may assume that
H contains the number 1. So any element of R can be uniquely written

k
as > pi(r)h; where h; € H and each p;(r) € Q[r]. For z € R, let p,(r)
i=1

be the coefficient of 1 in the representation of z. We use [z] to denote
the usual n-tuple representation of p,(r) as a vector in Q", namely, if
pe(r) = ag +ayr + -+ a,_1r" 1, then [z] = [ag,a1,...,a,_1]. For any
n X n symmetric matrix M, we can define the “area” of a b X h rectangle
to be [b]M[h]'. Tt is easy to see that this is a valid area function in that
it has the desired additive property. Indeed, a (b; + b2) x h rectangle has
area [by + bo|M[h] = [b1]M[h]" + [b2]M[h])’. Also, the area of an h x b
rectangle is [h|M[b]" = ([h]M[b]")" = [b]M[h]" since M is symmetric. Since
this is also the area of a b x h rectangle this area function is independent of
orientation. Let p(z) = 2" +p,_12" 1 +- - -+po be the minimal polynomial
for r and consider the companion matrix

0 0 0 —po
) .
Q=10 1
: .0
L0 - 0 1 —pp_1 |
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whose eigenvalues are the roots of p(x). We need to calculate [rz] in terms
of [x]. If pu(r) = ap + a1 + -+ + ap_17"" 1 then p..(r) = rp.(r) =
aor +a1r? + - 4 ap_or™ ' + a,_1r™ and solving p(r) =0 for " we get

pra(r) = aor + a1 + -+ an_or™ "t —an_1(po+p1r+ -+ pu_1r™ )
= —ap—-1po + (ao - an—1p1)7“ + (al - an—lpz)r2 + -

+ (an—2 - an—lpn—l)rnil-

Then
—Qnp—1P0 ap
ag — Gp—1P1 a1
[ra)’ = : =Q| . |=0qMul
Ap—2 — Qp—1Pn—1 An—1

Thus the area of a b x b rectangle will be [b]MQ[b]" while a b x b square
will have area [b|M[b]’. We first consider the case all eigenvalues of @
real. By Lemma 8 the eigenvalues of @) are distinct. Therefore there is an
n x n matrix P that diagonalizes Q. That is, P~'QP = D, where D is a
diagonal matrix with the eigenvalues of () (all nonzero) as diagonal entries.
By assumption one of the diagonal entries is less than zero. We choose M
to be the symmetric matrix P~ DP~!. Using v = [b]P~Y, the area of a
b x rb rectangle becomes [B|MQ[b] = [b|P~YDP~1Q[b] = vDP~1QPv' =
vD?v" > 0 for all b. Since this area is independent of orientation, we get
the same result for any rb x b rectangle. Without loss of generality, we
may assume that the first entry in D, say A1, is negative. Observe that
[1,0,...,0]P’"MPI[1,0,...,0' = [1,0,...,0/P"P~YDP~'P[1,0,...,0] =
A1 < 0. However, the entries of [1,0, ..., 0] P’ may be irrational. Therefore,
pick s to be any positive number with [s] sufficiently close to [1,0,...,0]P’
(in the Euclidean norm) so that [s]M[s]’ < A;/2 < 0. Then any s x s
square cannot be partitioned by rectangles of eccentricity r. It follows
that no square can be so partitioned.

We now consider the case where not all the conjugate roots are real
and modify the construction above. We may choose the matrix P so that

B, - 0
P7'QP = D where D is of the form | © . | and each B; is a
0 --- By

1 x 1 block for each real eigenvalue or a 2 x 2 block of the form [_O‘B g]

for each pair of complex eigenvalues o +i3. Let A be the diagonal matrix
whose diagonal entries are the same as those in D, that is, the real parts
of the eigenvalues of Q. We choose M = P YAP~!. The area of a
b x rb rectangle is then [b]MQ[b)’ = [B|P~VAP~Q[b) = vAP~1QPv =
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vADv' = > a?v? > 0 where the v; and «; are the components of v
and the real parts of the eigenvalues of @) respectively. We again get the
same result for any rb x b rectangle. By Lemma 7 we know that one
eigenvalue of ) has negative real part, o, and we may assume that this
is the first diagonal entry in A. Then [1,0,...,0]P’"MP[1,0,...,0]" =
[1,0,...,0]P"P~YAP~1P[1,0,...,0] = a < 0. By the same argument as
above, we may pick an s x s square with area less than a,/2. This square of
negative area cannot be partitioned by rectangles of eccentricity r. Hence
no square can be so partitioned. [

We include an example of the kind of partition created in the proof of
Theorem 10. The polynomial P(z) = 3 — 62% + 122 — 3 has three roots
on the circle centered at z = 2 with radius ¥/5. One of these is the real
number 7 = 2 — /5. The alternant is Q(z) = —6z% — 3 and

Q@) _ 1
P(z) - Q(z) o
Lpp—
o, L
23 %3 -
We partition a square as illustrated using ¢; = %, co = % and c3 = %.
b
1
a c
Figure 4

We then have a = ¢ir = 2—637“, b= cora=2r?and ¢ = c3r(1 +b) =

Zr+ 213 This rectangle is then (a+c) x (14b) = (47 + 373) x (1 +2r?).
Since r® — 6r% + 12r — 3 = 0, (4r 4+ 173) = (1 + 2r?) so this is indeed a
square.

The authors would like to thank Noa Goldring and Greg Tollisen of
Occidental College for finding and correcting an earlier mistake in our
area definition.
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