
For every element X = {x1, x2, . . . , xr} ∈ P, define AX = Ax1
Ax2

. . . Axr and vX = AXv. Finally,
write X̄ = {1, 2, . . . , k} \ X for the complement of X.

Now take X, Y ∈ P with X ! Y . Then AX̄ annihilates vY , because X ! Y implies the existence
of some y ∈ Y \ X = Y ∩ X̄, and

AX̄vY = AX̄\{y}AyAyvY \{y} = 0,

since A2
y = 0. So, AX̄ annihilates the span of all the vY with X ! Y . This implies that vX does not

lie in this span, because AX̄vX = v{1,2,...,k} #= 0. Therefore, the vectors vX (with X ∈ P) are linearly
independent; hence n ≥ |P| = 2k.

Problem 6. Let f #= 0 be a polynomial with real coefficients. Define the sequence f0, f1, f2, . . . of
polynomials by f0 = f and fn+1 = fn + f ′

n for every n ≥ 0. Prove that there exists a number N such
that for every n ≥ N , all roots of fn are real.

Solution. For the proof, we need the following

Lemma 1. For any polynomial g, denote by d(g) the minimum distance of any two of its real
zeros (d(g) = ∞ if g has at most one real zero). Assume that g and g + g′ both are of degree k ≥ 2
and have k distinct real zeros. Then d(g + g′) ≥ d(g).

Proof of Lemma 1: Let x1 < x2 < · · · < xk be the roots of g. Suppose a, b are roots of g + g′

satisfying 0 < b − a < d(g). Then, a, b cannot be roots of g, and

g′(a)

g(a)
=

g′(b)

g(b)
= −1. (1)

Since g′

g
is strictly decreasing between consecutive zeros of g, we must have a < xj < b for some j.

For all i = 1, 2, . . . , k − 1 we have xi+1 − xi > b − a, hence a − xi > b − xi+1. If i < j, both sides
of this inequality are negative; if i ≥ j, both sides are positive. In any case, 1

a−xi
< 1

b−xi+1
, and hence

g′(a)

g(a)
=

k−1
∑

i=1

1

a − xi

+
1

a − xk
︸ ︷︷ ︸

<0

<

k−1
∑

i=1

1

b − xi+1
+

1

b − x1
︸ ︷︷ ︸

>0

=
g′(b)

g(b)

This contradicts (1).

Now we turn to the proof of the stated problem. Denote by m the degree of f . We will prove
by induction on m that fn has m distinct real zeros for sufficiently large n. The cases m = 0, 1 are
trivial; so we assume m ≥ 2. Without loss of generality we can assume that f is monic. By induction,
the result holds for f ′, and by ignoring the first few terms we can assume that f ′

n has m− 1 distinct

real zeros for all n. Let us denote these zeros by x
(n)
1 > x

(n)
2 > · · · > x

(n)
m−1. Then fn has minima

in x
(n)
1 , x

(n)
3 , x

(n)
5 , . . . , and maxima in x

(n)
2 , x

(n)
4 , x

(n)
6 , . . . . Note that in the interval (x(n)

i+1, x
(n)
i ), the

function f ′
n+1 = f ′

n + f ′′
n must have a zero (this follows by applying Rolle’s theorem to the function

exf ′
n(x)); the same is true for the interval (−∞, x

(n)
m−1). Hence, in each of these m− 1 intervals, f ′

n+1

has exactly one zero. This shows that

x
(n)
1 > x

(n+1)
1 > x

(n)
2 > x

(n+1)
2 > x

(n)
3 > x

(n+1)
3 > . . . (2)

Lemma 2. We have limn→∞ fn(x(n)
j ) = −∞ if j is odd, and lim

n→∞
fn(x(n)

j ) = +∞ if j is even.

Lemma 2 immediately implies the result: For sufficiently large n, the values of all maxima of fn

are positive, and the values of all minima of fn are negative; this implies that fn has m distinct zeros.
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Proof of Lemma 2: Let d = min{d(f ′), 1}; then by Lemma 1, d(f ′
n) ≥ d for all n. Define

ε =
(m − 1)dm−1

mm−1
; we will show that

fn+1(x
(n+1)
j ) ≥ fn(x(n)

j ) + ε for j even. (3)

(The corresponding result for odd j can be shown similarly.) Do to so, write f = fn, b = x
(n)
j , and

choose a satisfying d ≤ b − a ≤ 1 such that f ′ has no zero inside (a, b). Define ξ by the relation

b − ξ =
1

m
(b − a); then ξ ∈ (a, b). We show that f(ξ) + f ′(ξ) ≥ f(b) + ε.

Notice, that

f ′′(ξ)

f ′(ξ)
=

m−1∑

i=1

1

ξ − x
(n)
i

=
∑

i<j

1

ξ − x
(n)
i

︸ ︷︷ ︸

< 1
ξ−a

+
1

ξ − b
+

∑

i>j

1

ξ − x
(n)
i

︸ ︷︷ ︸

<0

< (m − 1)
1

ξ − a
+

1

ξ − b
= 0.

The last equality holds by definition of ξ. Since f ′ is positive and
f ′′

f ′
is decreasing in (a, b), we have

that f ′′ is negative on (ξ, b). Therefore,

f(b) − f(ξ) =

∫ b

ξ

f ′(t)dt ≤

∫ b

ξ

f ′(ξ)dt = (b − ξ)f ′(ξ)

Hence,

f(ξ) + f ′(ξ) ≥ f(b) − (b − ξ)f ′(ξ) + f ′(ξ)

= f(b) + (1 − (ξ − b))f ′(ξ)

= f(b) + (1 − 1
m

(b − a))f ′(ξ)

≥ f(b) + (1 − 1
m

)f ′(ξ).

Together with

f ′(ξ) = |f ′(ξ)| = m

m−1
∏

i=1

|ξ − x
(n)
i |

︸ ︷︷ ︸

≥|ξ−b|

≥ m|ξ − b|m−1 ≥
dm−1

mm−2

we get
f(ξ) + f ′(ξ) ≥ f(b) + ε.

Together with (2) this shows (3). This finishes the proof of Lemma 2.

ba ξ

f ′

f

f + f ′
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