XXV Marató de Problemes FME

Problema 255

Solució estrictament escrita pels organitzadors i per res extreta d'internet

Let $f \neq 0$ be a polynomial with real coefficients. Define the sequence f_0, f_1, f_2, \ldots of polynomials by $f_0 = f$ and $f_{n+1} = f_n + f'_n$ for every $n \ge 0$. Prove that there exists a number N such that for every $n \geq N$, all roots of f_n are real.

Solution. For the proof, we need the following

Lemma 1. For any polynomial g, denote by d(g) the minimum distance of any two of its real zeros $(d(q) = \infty$ if q has at most one real zero). Assume that q and q + q' both are of degree $k \ge 2$ and have k distinct real zeros. Then $d(g+g') \ge d(g)$.

Proof of Lemma 1: Let $x_1 < x_2 < \cdots < x_k$ be the roots of g. Suppose a, b are roots of g + g'satisfying 0 < b - a < d(q). Then, a, b cannot be roots of q, and

$$\frac{g'(a)}{g(a)} = \frac{g'(b)}{g(b)} = -1.$$
(1)

Since $\frac{g'}{g}$ is strictly decreasing between consecutive zeros of g, we must have $a < x_j < b$ for some j. For all i = 1, 2, ..., k - 1 we have $x_{i+1} - x_i > b - a$, hence $a - x_i > b - x_{i+1}$. If i < j, both sides of this inequality are negative; if $i \ge j$, both sides are positive. In any case, $\frac{1}{a-x_i} < \frac{1}{b-x_{i+1}}$, and hence

$$\frac{g'(a)}{g(a)} = \sum_{i=1}^{k-1} \frac{1}{a-x_i} + \underbrace{\frac{1}{a-x_k}}_{<0} < \sum_{i=1}^{k-1} \frac{1}{b-x_{i+1}} + \underbrace{\frac{1}{b-x_1}}_{>0} = \frac{g'(b)}{g(b)}$$

This contradicts (1).

Now we turn to the proof of the stated problem. Denote by m the degree of f. We will prove by induction on m that f_n has m distinct real zeros for sufficiently large n. The cases m = 0, 1 are trivial; so we assume $m \ge 2$. Without loss of generality we can assume that f is monic. By induction, the result holds for f', and by ignoring the first few terms we can assume that f'_n has m-1 distinct real zeros for all n. Let us denote these zeros by $x_1^{(n)} > x_2^{(n)} > \cdots > x_{m-1}^{(n)}$. Then f_n has minima in $x_1^{(n)}, x_3^{(n)}, x_5^{(n)}, \ldots$, and maxima in $x_2^{(n)}, x_4^{(n)}, x_6^{(n)}, \ldots$. Note that in the interval $(x_{i+1}^{(n)}, x_i^{(n)})$, the function $f'_{n+1} = f'_n + f''_n$ must have a zero (this follows by applying Rolle's theorem to the function $e^{x}f'_{n}(x)$; the same is true for the interval $(-\infty, x_{m-1}^{(n)})$. Hence, in each of these m-1 intervals, f'_{n+1} has *exactly* one zero. This shows that

$$x_1^{(n)} > x_1^{(n+1)} > x_2^{(n)} > x_2^{(n+1)} > x_3^{(n)} > x_3^{(n+1)} > \dots$$
 (2)

Lemma 2. We have $\lim_{n\to\infty} f_n(x_j^{(n)}) = -\infty$ if j is odd, and $\lim_{n\to\infty} f_n(x_j^{(n)}) = +\infty$ if j is even.

Lemma 2 immediately implies the result: For sufficiently large n, the values of all maxima of f_n are positive, and the values of all minima of f_n are negative; this implies that f_n has m distinct zeros.

Proof of Lemma 2: Let $d = \min\{d(f'), 1\}$; then by Lemma 1, $d(f'_n) \ge d$ for all n. Define $\varepsilon = \frac{(m-1)d^{m-1}}{m^{m-1}}$; we will show that

$$f_{n+1}(x_j^{(n+1)}) \ge f_n(x_j^{(n)}) + \varepsilon \quad \text{for } j \text{ even.}$$
(3)

(The corresponding result for odd j can be shown similarly.) Do to so, write $f = f_n$, $b = x_j^{(n)}$, and choose a satisfying $d \leq b - a \leq 1$ such that f' has no zero inside (a, b). Define ξ by the relation $b-\xi = \frac{1}{m}(b-a)$; then $\xi \in (a,b)$. We show that $f(\xi) + f'(\xi) \ge f(b) + \varepsilon$. Notice, that

$$\frac{f''(\xi)}{f'(\xi)} = \sum_{i=1}^{m-1} \frac{1}{\xi - x_i^{(n)}}$$
$$= \sum_{i < j} \frac{1}{\underbrace{\xi - x_i^{(n)}}}_{<\frac{1}{\xi - a}} + \frac{1}{\xi - b} + \sum_{i > j} \frac{1}{\underbrace{\xi - x_i^{(n)}}}_{<0}$$
$$< (m-1)\frac{1}{\xi - a} + \frac{1}{\xi - b} = 0.$$

The last equality holds by definition of ξ . Since f' is positive and $\frac{f''}{f'}$ is decreasing in (a, b), we have that f'' is negative on (ξ, b) . Therefore,

$$f(b) - f(\xi) = \int_{\xi}^{b} f'(t)dt \le \int_{\xi}^{b} f'(\xi)dt = (b - \xi)f'(\xi)$$

Hence,

$$f(\xi) + f'(\xi) \ge f(b) - (b - \xi)f'(\xi) + f'(\xi)$$

= $f(b) + (1 - (\xi - b))f'(\xi)$
= $f(b) + (1 - \frac{1}{m}(b - a))f'(\xi)$
 $\ge f(b) + (1 - \frac{1}{m})f'(\xi).$

Together with

$$f'(\xi) = |f'(\xi)| = m \prod_{i=1}^{m-1} \underbrace{|\xi - x_i^{(n)}|}_{\ge |\xi - b|} \ge m|\xi - b|^{m-1} \ge \frac{d^{m-1}}{m^{m-2}}$$

we get

$$f(\xi) + f'(\xi) \ge f(b) + \varepsilon.$$

Together with (2) this shows (3). This finishes the proof of Lemma 2.

