Problema 1815: Feu com la Bet

🐾 🐾 gossos d'esquadra 🐾 🐾

¡Woof! Soy Zuma otra vez. ¡Qué graciosa es Bet que hace dos carreras y no pisa la uni por ninguna! A mí ya no me dejan estudiar en la universidad. No desde El Accidente...

•••

Consideraremos dos casos: que a(x) sea constante o que no lo sea.

Primero, supongamos que existe una solución con a(x) constante. Entonces, a(x) = a(0) y

$$f(x) + g(y) = a(0)b(y) \quad \forall x, y \in \mathbb{R}$$

Evaluando en y = 0:

$$f(x) + g(0) = a(0)b(0) \implies f(x) = a(0)b(0) - g(0) \quad \forall x \in \mathbb{R}$$

Por tanto, en este caso, f(x) ha de ser una función constante también, f(x) = f(0). Además:

$$g(y) = a(0)b(y) - f(0) \quad \forall y \in \mathbb{R}$$

Por lo que g(x) queda completamente determinada por los valores de las constantes a(0), f(0) y por la función b(x). Entonces, la solución más general posible que cumpla que a(x) y f(x) son constantes es la siguiente: dadas $c_1, c_2 \in \mathbb{R}$ constantes cualquiera, $a(x) = c_1, f(x) = c_2 \ \forall x \in \mathbb{R}, b(y)$ es una función cualquiera y $g(y) = c_1 b(y) - c_2$. Solo hace falta comprobar que, efectivamente, es una solución a la ecuación:

$$f(x) + g(y) = a(x)b(y) \quad \forall x, y \in \mathbb{R} \iff c_2 + (c_1b(y) - c_2) = c_1b(y) \quad \forall x, y \in \mathbb{R}$$

Y claramente es solución.

Ahora, supongamos que existe una solución tal que a(x) no es constante. En ese caso, $\exists x_1 \in \mathbb{R}$ tal que $a(0) \neq a(x_1)$. Este x_1 es una Mickey-herramienta que nos ayudará más adelante. Volvamos ahora a la ecuación original y evaluemos esta vez en x = 0:

$$f(0) + g(y) = a(0)b(y) \quad \forall y \in \mathbb{R} \implies g(y) = a(0)b(y) - f(0) \quad \forall y \in \mathbb{R}$$

Si sustituimos esta expresión para g(y) en la ecuación original obtenemos:

$$f(x) + a(0)b(y) - f(0) = a(x)b(y) \quad \forall x, y \in \mathbb{R} \implies f(x) - f(0) = b(y)(a(x) - a(0)) \quad \forall x, y \in \mathbb{R}$$

Ahora, como esta ecuación se cumple para todo valor de x, en particular se cumple para el de la Mickey-herramienta x_1 . Como $a(x_1) - a(0) \neq 0$, podemos dividir por este valor y obtenemos:

$$b(y) = \frac{f(x_1) - f(0)}{a(x_1) - a(0)} \quad \forall y \in \mathbb{R}$$

Hemos obtenido que b(y) tiene el mismo valor constante para todo valor de y, por lo que en este caso b(y) será una función constante y g(y) = a(0)b(y) - f(0) también. Análogamente al caso anterior, la solución más general que cumpla estas condiciones es: $b(y) = c_1, g(y) = c_2 \ \forall y \in \mathbb{R}$, con $c_1, c_2 \in \mathbb{R}$ constantes cualquiera, a(x) un función cualquiera y $f(x) = c_1 a(x) - c_2$. Es fácil comprobar que, en efecto, es solución:

$$f(x) + g(y) = a(x)b(y) \quad \forall x, y \in \mathbb{R} \iff (c_1a(x) - c_2) + c_2 = c_1a(x) \quad \forall x, y \in \mathbb{R}$$

En resumen, o bien f y a son funciones constantes, b es una función cualquiera y g queda determinada por la ecuación, o bien b y g son constantes, a una función cualquiera y f queda determinada por la ecuación.

Finalmente, estamos muy agradecidos con la Bet, no solo por darnos estos 7 puntos sino también porque nos rasca la barriguita cuando se lo pedimos . Por esto le hemos pedido a Skye y Marshall que le escriban un poema. Esperamos que os guste, son algo tímidos, pero realmente tienen patitas de escritores.

Poema para Bet

Aquí estamos todos pa' cantarte tu canción
Estamos apiñados como balas de cañón
Y es que no hay quien pueda con esta afición
Y aunque último estuvieras siempre te ven campeón
¡Beeeeeet, Beeeeeet, Beeeeeet!
Ahora, Bet, ahora, no dejes de atacar
Ahora, Bet, ahora porque el gol ya va a llegar
¡Beeeeeet, Beeeeeet, Beeeeeet, Beeeeeet!
Hay una leyenda que recorre el mundo entero
verde y blanco sus colores
blanco y verde es el sendero
Luz en la mañana y en la noche quejío y quiebro
Bet, 'musho' Bet, en el mundo lo que más quiero

Marshall y Skye¹

¹Cualquier parecido con el himno del mejor equipo del mundo es pura coincidencia. Nos gusta jugar con pelotas y dormir la siesta porque somos perros, no andaluces fanáticos de fútbol.